Das Signifikanzniveau einfach erklärt + Beispiel
Das Signifikanzniveau α beschreibt die maximale Wahrscheinlichkeit, dass eine Nullhypothese fälschlicherweise abgelehnt wird.
Du wählst das Signifikanzniveau selbst, bevor du einen statistischen Test durchführst. Meistens wird α = 0.05 oder α = 0.01 gewählt. Bei Hypothesentests wird der p-Wert mit dem Signifikanzniveau verglichen, um zu bestimmen, ob ein Zusammenhang, Effekt oder Unterschied statistisch signifikant ist.
Wenn der p-Wert kleiner ist als das gewählte Signifikanzniveau, ist das Ergebnis statistisch signifikant und die Nullhypothese kann abgelehnt werden.
Hypothesentests
Im Rahmen quantitativer Forschung testet du Hypothesen mithilfe von Datensätzen. So findest du heraus, ob ein Zusammenhang, Effekt oder Unterschied statistisch signifikant ist.
Grundgesamtheit und Stichprobe
Die Grundgesamtheit bezeichnet alle Personen, Objekte oder Ereignisse, zu denen du eine Aussage treffen möchtest. Da es oft unmöglich ist, Daten für die ganze Grundgesamtheit zu erheben, nimmst du eine Stichprobe.
Hypothesen formulieren
Bevor du eine statistische Untersuchung durchführen kannst, musst du Hypothesen aufstellen.
Nullhypothese H0: Die Nullhypothese besagt immer, dass es keinen statistisch signifikanten Zusammenhang zwischen der abhängigen und den unabhängigen Variablen gibt.
Alternativhypothese H1: Die Alternativhypothese besagt, dass es einen statistisch signifikanten Zusammenhang zwischen der abhängigen und den unabhängigen Variablen gibt.
Im Rahmen deiner statistischen Untersuchung willst du herausfinden, ob du die Nullhypothese verwerfen kannst. Du testest hingegen nicht, ob du die Alternativhypothese annehmen kannst.
Signifikanzniveau wählen
Bevor du einen Hypothesentest ausführen kannst, musst du das Signifikanzniveau α wählen. Oft wird ein Signifikanzniveau von 5 % (α = 0.05) gewählt, aber für strengere Tests oder bei einem großen Datenvolumen bietet es sich an, ein Signifikanzniveau von 1 % festzulegen (α = 0.01).
In seltenen Fällen wird auch ein Signifikanzniveau von 10 % (α = 0.1) akzeptiert. Dies kann jedoch schnell zu Alpha-Fehlern führen.
Signifikanzniveau und p-Wert vergleichen
Beim Durchführen statistischer Tests erhältst du einen p-Wert. Durch den Vergleich des p-Werts mit dem Signifikanzniveau findest du heraus, ob ein Ergebnis statistisch signifikant ist.
- Wenn p < α, spricht man von einem statistisch signifikanten Ergebnis. Du kannst die Nullhypothese ablehnen.
- Wenn p ≥ α, ist das Ergebnis nicht statistisch signifikant. Du kannst die Nullhypothese nicht ablehnen.
Der p-Wert hat keine Aussagekraft über die Wahrheit einer Hypothese. Er gibt nur an, wie wahrscheinlich es ist, dass die vorliegenden Daten vorkommen können, wenn die Nullhypothese stimmt.
Wenn der p-Wert kleiner als das Signifikanzniveau ist, kannst du daher die Nullhypothese verwerfen. Dies bedeutet aber nicht automatisch, dass deine Alternativhypothese wahr ist.
Statistische Ergebnisse beschreiben
Wenn du in deiner Arbeit statistische Ergebnisse angeben willst, solltest du nicht nur den p-Wert, sondern auch andere deskriptive Statistiken angeben, wie den Mittelwert M oder die Standardabweichung SD.
Signifikanz richtig beurteilen
Bei der Interpretation statistischer Ergebnisse gibt es einige Punkte zu beachten.
- Die Signifikanzniveaus (wie 0.01 oder 0.05) werden willkürlich gewählt. Das Signifikanzniveau zu verändern, kann ein Ergebnis statistisch signifikant erscheinen lassen, obwohl sich an den Daten nichts verändert.
- Die Signifikanz hängt stark von der Größe der Stichprobe ab. Mit einer großen Stichprobe ist es einfacher, statistisch signifikante Ergebnisse zu erzielen.
- Es gibt einen Veröffentlichungsbias: Wissenschaftliche Zeitschriften publizieren fast ausschließlich Artikel, die statistisch signifikante Ergebnisse hervorbringen. Daher werden Artikel, die dies nicht tun, meistens nicht publiziert, auch wenn diese die Realität besser widerspiegeln würde.
- Ein statistisch signifikantes Ergebnis heißt nicht automatisch, dass auch Kausalität besteht. Es ist z. B. möglich, dass der Zusammenhang durch Faktoren beeinflusst wird, die nicht Teil deiner Untersuchung sind.
Häufig gestellte Fragen
- Was ist statistische Signifikanz?
-
Statistische Signifikanz gibt an, wie wahrscheinlich es ist, dass ein Ergebnis auf Zufall basiert. Signifikanz wird i. d. R. durch einen p-Wert angegeben.
Das Signifikanzniveau, das mit dem der p-Wert verglichen wird, wird von den Forschenden selbst festgelegt und ist meistens 0.05 oder 0.01. Wenn der p-Wert kleiner ist als das gewählte Signifikanzniveau, spricht man von einem statistisch signifikanten Ergebnis.
- Was ist ein Signifikanzniveau?
-
Ein Signifikanzniveau α gibt an, was die maximale Wahrscheinlichkeit ist, mit der eine Nullhypothese fälschlicherweise abgelehnt wird. Das Signifikanzniveau legst du zu Beginn deiner statistischen Untersuchung selbst fest.
- Was ist ein Alpha-Fehler?
-
Ein Alpha-Fehler, auch Typ-1-Fehler oder false positive genannt, ist das fälschliche Ablehnen einer Nullhypothese. Es wird aus der statistischen Analyse also geschlossen, dass es einen statistisch signifikanten Zusammenhang, Effekt oder Unterschied gibt, obwohl dies eigentlich nicht der Fall ist.
Ein niedriges Signifikanzniveau erhöht die Wahrscheinlichkeit für einen Alpha-Fehler.
Diesen Scribbr-Artikel zitieren
Wenn du diese Quelle zitieren möchtest, kannst du die Quellenangabe kopieren und einfügen oder auf die Schaltfläche „Diesen Artikel zitieren“ klicken, um die Quellenangabe automatisch zu unserem kostenlosen Zitier-Generator hinzuzufügen.